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The article constitutes an analytical investigation of an unsteady
(due to a change in the boundary of the porous body) laminar bound~
ary layer. There is a chemical reaction (for infinitely large rates of
heterogeneous and homogeneous reactions) between the wall surface
material together with the injected material and a coolant contained
in the extemal flow. For the particular case Pr = Sc; = 1, a solution
in closed form is obtained for problem (31)~(32).

When applying boundary layer theory to laminar
flows with chemical reactions it is usual to take into
account either the reaction of an oxidizer being fil~
tered through a chemically inert porous wall with the
gas of the external stream [4-6], or breakdown of
the material of the body surface (sublimation, com-
bustion, ete.) in the absence of insufflation [2].

In the present paper both phenomena are taken
into account, i.e., an analytical investigation is per-
formed for cases in which a coolant is blown through
a porous wall or the coolant and the wall react
with the laminar boundary layer. Similar solutions
have been obtained for the case of blowing of hydrogen
through a porous graphite wall washed by a uniform
stream of air, chemical reaction of the graphite and
hydrogen with the oxygen of the external stream, i.e.,
combustion, occurring at the body surface.* Here it
is assumed that the high temperature conditions will
effect equilibrium for the heterogeneous reaction

2C+0,=2C0 (a)
and for the homogeneous reaction
2H, + 0, = 2H,0 (b)

occurring in an infinitely thin zone at the body surface,
considered as a separation surface. As a result of
interaction of the hydrogen and the graphite of the wall
with oxygen of the air at the body surface, only water
and carbon dioxide will be formed, respectively [3],
these reactions proceeding both in the boundary layer
and within the wall (in a mixture with an inert com-
ponent, i.e., nitrogen). We cannot consider the equa-
tions of internal mass transfer, since the weight
fraction of the gases entering the wall decreases
iapidly, and has no influence on the concentration dis-
tribution in the boundary layer. The rate of inflow of
oxygen corresponds to the stoichiometric value re-
quired for full oxidation of hydrogen and carbon, as

a result of which the concentrations of H, and O, in

*Laminar flow of a liquid and gas in a nonreacting
boundary layer with strong surface separation has
been investigated in detail [1,2]. The present paper
examines conditions at the separation surface coincid-
ing with the boundary of the body, in the presence of
chemical reactions.

the reaction zone tend to zero. The volume porosity
P of the wall is equal to the surface value, and we
may neglect the thermodiffusion effect. In addition,
close to the wall surface, i.e., in the high temperature
zone, the reaction of H, with C, forming C,H, (or
C,Hy) is possible. These gases become oxidized, as
was true in reactions (a) and (b), to give CO and H,0.
Consequently, the intermediate reaction of Hy with C
(whose rate W~ — 0, since Cc— 0 as a result of re-
action (b)) has no influence on the thermal effect, and
need not be considered.

In accordance with the process scheme being con-
sidered, there is no hydrogen in molecular form in
the compressible gas stream, and there is no O, com-
ponent within the porous wall. Therefore, the follow-
ing gases will be found within the volume of the bound-
ary layer: O,, HyO, CO and N,. I is clear that these
components may be divided into three distinct groups
as regards molecular weight, and therefore we have
to consider multi-component diffusion for an accurate
description of the process.

If we consider a gas mixture consisting of N com-
ponents (for the conditions examined N = 4), this
problem reduces to solution of a system of equations
for an unsteady reacting boundary layer

e +4-div{pv) =0, 1)
d%
du d. au)
—— — —1, 2
e dt dy (p dy | @
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and the equation for heat conduction in the porous wall

M

dTy ) (;»2 0Ty

PrCpg = dy

9 s
dt dy J

) - Cpr (P v)r

Here Cj (Ci = pi/p) is the weight concentration of the

i-th gas component; H (H = h +u?/2) is the total, and
N

T
& ( h= Z”LL C,) the static enthalpy; A; (h, = j' ¢, dT + h[)
i=1 Ta
is the enthalpy of component i; hj is the enthalpy of
formation of the component at temperature Ty; oy,
¢bylchy = cpypy) and Ay are, respectively, the
effective density, volume heat capacity at constant
pressure, and thermal conductivity of the porous wall,
as determined from the relation

E=(1—P)g. +Pg,, (8)

where £ = ¢}, p, and A,

In writing (7), it was assumed that the character-
istic length of the test body is large enough in com-
arison with the thickness of the thermal boundary
layer in the porous wall, i.e., 8/8x < 8/9y.

Boundary Conditions at the Wall. Taking into
account that the C and H components of the surface
take part in the heterogeneous and homogeneous re-
actions, we shall find the mean mass fluxes J; (i =1,
2,3,4,H,C) being formed, and also the dependence
between J; and the stoichiometric coefficients rg:

for reaction (a)

2m, Je me J
foe= e = £ (9)
My Iy

= foo=— =

iy 55
for reaction (b)

Foo== = —, f :——:—‘——- (]0)
! my JEM

(Subscripts 1,2, 3,4, H, and C denote, respectively,
components O,, CO, H;0, Ny, Hy and C, Jy =J,C+ J{I).
We shall designate r = z™1. Then, from the law of
conservation of mass in reactions (a) and (b), we
must have z + zgr=1, zg+ zpp = 1-
In the general case the flux Jj may be represented
in the form

Ji=p(—V)Cu+j; (i=1,2 3, 4, (11)

where V is the velocity of displacement of the body
surface and jj is the diffusion flux (jj = — pDj. 8C;/9y).
It should be noted that in the given coordinate system,
the vectors V < 0 and j; < 0, and the directions of the
fluxes j and j; {i = 2, 3,4) are opposite. Also Jq = jq,
since Cig = 0. Summing equations (14) over the sub-
scripti(i = 1, 2, 3, 4), we obtain the condition for conser-
vation of mass of the mixture at the separation surface

p(v—V)=J (12)

where Jsis the total flow rate of the material ablating
from the porous wall and of coolant filtering through
it. Since (pgvyle = (V)3 and py = Pp, + pc (1 — P),
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we have

o
J}::Pps—(»Pi —V) —(l —P)Vp, =

= (PH v}-[)e —pzV. (13)

When P =0, Jg = ~ Vps,which corresponds to the
case of ablation of a solid wall, for example when
it sublimates [2] or burns. If P =1, Jy = plvg — V),
and (12) transforms to the ordinary form{1].

It is clear that

Jo=—(1—P)Vo.. (14)

Since Cpy = 0 and Jy1 = jgy at the wall in laminar
flow, we have therefore the following analytical ex-
pression for determining the mean flow rate of hydro-
gen from a unit surface of the body:

However, since the distribution of the concentrations
of gases within the porous wall is unknown, we deter-
mine the numerical value of jg to be

U |
= Po | BV ) =t —PVoy.  O9)

Using the relations (9)—(15), we can write down
the boundary conditions at the body surface:

p@—V)={(pyvy), —p:V; ’ (16)
U= 0’ Cl = 0’ Ci = CiS (i = 21 31 4)’
T=Ty=Ts (17)

”‘.il =!”‘1Jc+r1“1 JH: fH{p(U——-V)Cgs +]2] = JC’

fln[p(U~V)C3s +j3]=JH; (]8)
p0—V)QT) =g 22 3 T (19)
dy Oy

Here Q(Tg) is the heat of reaction during burning of
hydrogen and of the graphite wall:

Q(TS) = QRC‘]C/JE + QRH JH/JZ;
where Jy = JC + JH; QRC and QRH are, respectively,

the heat of reaction per unit mass of carbon and hyd-
rogen. Bearing in mind reactions {a) and (b), we find

{4 m.
QR(;*“h'C_}' 2ﬂllc h’l—_ m hz:
m
U = Py + 5 hl‘“m—nihs

In determining the density pg of the gas mixture at
the body surface in the porous wall, which enters as
a factor in (8), (13), and (14), it should be remembered
that Cgg = Cyg =0, Cgge = 1. Then, from the equation
of state (6), taking into account the last inequalities,
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we have, for the mixture of gases inside a porous
wall,

R
pe = H};(pﬂ CH T),

Cl' .
pr =7 Ts 27{ (i=2 3, 4).

i

Since V5 = (bHe/P3) Ve and pg =

T Cs\ ™t .
07 = Prye (TSmHE —m—s) (i=2, 3, 4).

e i &

p5» therefore,

The first term in (16) obtained by summation in
(9) and (10) of the relations with coefficient r and rp
is the stoichiometric relation between the flow rates
of components of the porous wall (carbon J, and the
filtered hydrogen Jyj}, necessary for full oxidation
of these by the flux j; of oxygen.

The boundary conditions in the stream at infinity
are

U= Uy, H= Haay
C;=Cp (=14, C,=C;=0 (21)
and in the porous wall at infinity

Ty=T,. (22)

If we consider this kind of ablation regime, when
hydrogen is supplied through a flat plate according to

P (Vo o 72
U == e — B, (23
e Zps ( x ) )

and the rate of displacement of the surface of separat-
ion of the phases, V, is a function only of coordinate
x {(correspondingly V ~ x1/ %), and does not depend on
time,

Yz
V=&(M) A (A<0), (24)
205\ x

then in solving system (1)—(7), with boundary con-
ditions (16)—(19), we may use the following variables :]:

pu=q,(, )

) [an,',-tp(n, )+ 4 ]
Ps

- 1
e 2 \ UaX

U

Ts =T,0(ng), n=( )”’(y—Vr),

@

m«=xl(y—vn, xl=( Ae ) (25)

OzCpy

where, according to (7), (17) and (22), the function
6(nz) is a solution of the boundary problem

d de de
L(®) ——] +N(@©) =0,

dng l duy dn;
80(0)=—* =n, 0,=I, 26)

2
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i.e.,
ns = L@®)de 7 a8 _ M(l)— M) @)
M@ —M(l)y dng L(9)
Here
e ey cpn) B
NO=NO-+0) lpzco)e A
pgcpg= (pgcpg)e P (B) = (pH CpH)e 117(9):

Ae=Ag, L(8), P5Cpy=(05Cpy), N (0),

M(B) = [ N(0)do.

In order to elucidate the meaning of the dimension-
less constants A and B in (23) and (24), we shall find
the mass flow rate of carbon, Gg, and hydrogen, Gy:
at the surface of a porous plate of length [:

i

GC=5JCdx:(P—1)~—~—17{; A,
0
G*E(]H)dx_(B PA) /Re

where K is the insufflation parameter (K = pHe/ [92)5

Ke = po/ey & 1, Rew = UooPao I/ Baoy M = P Uao K.
Cc~ FC/'fz

Hence

A=[(P—1K. 2" G Ky Res,
B =G,V Res %+ PA.
Substituting (23) —(25) into (1)~(7) and boundary

conditions (16)—(19) we arrive at the following bound-
ary problem:

3 {- o 9 0u _

0 (w G, 9 o _
an(s_qan)+2 o =0

=112 3)
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an | Pr
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; LiE 2 9
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Ceo)=0 (=2, 3),
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. e M) —M
@0, NQTs) =Cpp(Tsy 7, 4 _j—)ﬁ(;)_(ﬂ
Ne=4
h_2 U rﬁ — h ﬁ} 29
+pr<T5)(uwH5n ‘;1 o]’ -

J.o=(P— 1)K 4, J,=K(B—PA), B*=BK—A.

As has been shown in reference [2], the momentum
equation in {28) is valid only for sufficiently small
initial values of time (of the order of several tens of
seconds). In the conditions examined this limitation
is extended also to the remaining relations of system
(28). The boundary conditions (16)~(19), written in
terms of the new variables (23)-(25), are satisfied
exactly, and transform to the form (29). In deriving
(29) it was assumed that pye = Py = 3 -

The equations of momentum and energy (28) are
of the third order (since p' U = ¢,) and second order,
respectively. Each of the three diffusion equations
is of second order. In addition, the two quantities
Ty and C, are as yet unknown. Relations (29), to-
gether with relations (5) and (6), give thirteen con-
ditions.

Congiderable mathematical simplifications occur
for Pr = Sci = 1 and pp = const. In this case solutions
of the diffusion and energy equations of system (28)—
(29) have the form [2]

G =Cis+(Cio —Crhul) (=1, 2, 3,
H=Hs+(Ho— Hg) u(n), (30)
and, therefore, if Hgand Cjg are known, the problem
reduces to determining the velocity field U = 4(n),
i.e., to solution of the momentum equation.

The problem (28)—(29) may be simplified by intro-
ducing the new desired function w= nou/en, and by
using U as the independent variable [1]. Then

200" 4 f);;& =0,
@j) +0'Ci=0 (=123, (31)

oo 1Y a-
21—\
{m[ Pr ( Pr)u “r

N=4 .
C. . ’
h | =% 4, Lo’ H =0
+§ (e )]+

0(l)=0, ©(0)=I1/2B%

Al)=H,, C,(1)=C C(I)=0 (=2, 3),

—2h0W) =r .+ T,

ypdy =1, 2r

AM— M)

20" (0)Q(Ts) = T,cpy (T's) N

N =4
_ 200 (g NVt 32
Pr(TS) ( %' Pt ‘)}1 ( )
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where

ji = —Ci/Sc,,

Ji=jio0)+ o' (0C;s (=1, 2, 3).
(In (31), (32), and subsequently, derivatives with
respect to W' are denoted by primes).

The system (31)—(32) must be supplemented by
(N — 1) relations giving the fluxes fl as a function
of the binary Idiffusion coefficients D;yi and the para-
meters Cy, Cy, my [9]:

K=3 C

i3 K LL _ ’_K) -
8 ;‘;:; D e \ G Cx
K=3 CK (C'K C; k )
= el Shasm '_“_")s 74:15
-y Gk C;
N=4
i=1,2 3, i =0, {33)

i=1

and alsorelations giving the physical coefficients of the
gases as a function of temperature and concentration [7]:

B = b(m )" 072 by = o H R<i o+ i),

m; 15 R 5
DiK =d[T? (mi + mK)/QmimK} % g1 Gz:;<2’
v (Co/m)p, o (Cifm) &,
p4 - Z e )\, == -,
: Cy ‘ Cr
i=1 . P Sk p
. iK P iK
K=1 K ) K
N=4
O =b+eT +dT2 o, = ¥ ¢, Co (34)

i=]

where o; is the diameter of the molecule; gy = (o7 +
+0g)/2; Fij = Fgg = 1; Fig = 1, 2(oik/0ip)? [2mK/
Jimg + m;)]*/? for i # K; cy; is the heat capacity of
the i-th component of the gas at constant volume.
Values of the coefficients b, ¢, d and b, ¢, dfor
certain gases are given in reference [5,7,9]. For
the complex fip the inequality fif= T0™! is valid [8].
For high temperatures n = 1/2.

Thus, it is required to solve system (31) of five
equations of second order with five unknowns (TS, Cy
and j;, 1=1,2,3), with ten conditions (32), and five
relations (5}, (6), and (83). The flux j, is determined
from the second equality of (33), and the thermo-
physical parameters from (34). Therefore, we have
a closed system of equations, boundary conditions,
and supplementary conditions, which must be solved
by means of numerical integration, although these
calculations are quite complicated for the given
problem.

We shall restrict ourselves to the case Pr = Sc; =
=1, up= const. Then the solution of the momentum
equation, allowing for the boundary condition «(1) = 0,
will be [1]

u

m(ﬁ) =y 12 oy (fzuﬁ), M :j
b

1

du, (35)
{

1
£
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where u,y are the zeros of the function w,,. Tables
of uy{y) and wy are given in [1,2].

From the remaining conditions of (32), taking
into account (30) and (35), we obtain a system of five
equations

up' = 1/2B%, Cre = 11203 (T, + 1117,
Cos = I [ ryy (B* + 2u57"%) |74,

g5 = jH [rm (B* + 2u5 ") |7,
M(n)— M(1)

B*Q(Ts) =T, ACp,(Ts) N @)

—2u" " (Heo + 1yCro + ByCio)

for calculating the parameters Cjeo, Cys, C3g, Tg,and
Y (tg v = wy(0)). Since v =7y(uy), then, knowing v, we
can find u, from tables. The values @ = U() appearing
in (30) are determined by solution of the momentum
equation from the second equality of (35). Using the
relations

o= To x_(zfz_”i‘h Y ()
T eal e, \ay = oy, 0y Ju’

where Ty = 4 (0u/0y)y, as well as (30), we obtain,
after simple transformations, the friction coefficient

¢ = 27" VR,
and the heat flux at the wall
G = UQ_A /2 Qoo Ueo (Hgo —_ Clmhl — C4mh4)/ VIE;‘

Thus, for the special case Pr = Sc; =1 and pp=
= const the solution of the given problem may be
obtained in closed form.

NOTATION

x is the coordinate along the flat plate; y is the
coordinate normal to it; u and v are components of
flow velocity along x and y, respectively; R is the
universal gas constant; p is the pressure; Pr = uEP/ A,
Scj = u/pDj, Re = pul/u, p is the dynamic viscosity;
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Ci and m; are the mass concentration and molecular
weight, respectively, of the i-th component; j; (jj =
= pijgi = —pDj - aci/ay) is the diffusion mass flux; ﬂ
normalized diffusion mass flux j; = —Sci 'Ci); U =
= Ul V = VAleo; B = p/Poos I = U/lo. Subscripts: «
stands for conditions at the outer edge of the boundary
layer; w means at the wall; x is for the value at the
given coordinate; the subscript s refers to values at
the body surface, unknown prior to solution of the
problem; Z refers to material of the porous wall,
through which the coolant (hydrogen) filters; - and e
are for conditions in the porous body, respectively,
when y — 0 and y — —; g refers to the mixture of
gases contained within the porous wall.
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